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Phenomenological model for a melt-freeze phase of sliding bilayers
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Simulations show that sliding bilayers of colloidal particles can exhibit a phase, the “melt-freeze” phase,
where the layers stochastically alternate between solidlike and liquidlike states. We introduce a mean field
phenomenological model with two order parameters to understand the interplay of two adjacent layers while
the system is in this remarkable phase. Predictions from our numerical simulations of a system in the melt-
freeze phase include the tendency of two adjacent layers to be in opposite states �solid and liquid� and the
difference between the fluctuation of the order parameter in one layer while the other layer is in the same phase
compared to the fluctuation while the other layer is in the opposite phase. We expect this behavior to be seen
in future simulations and experiments.
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I. INTRODUCTION

General theories of nonequilibrium phenomena are still
elusive and current research in nonequilibrium physics is di-
rected on a phenomenon-by-phenomenon basis. One impor-
tant problem is the shear-induced melting �and/or freezing�
of a solid. The shear flow of a solid is widely studied experi-
mentally �1� due to its importance in material science. Being
a standard example of the rich field of nonequilibrium phase
transitions, shear-induced melting is also widely studied
theoretically on systems as diverse as vortex lattices to sus-
pended colloidal particles �1–4�.

For clarity, we will focus on a specific system of colloidal
particles on two dimensional sheets �2�. An isolated sheet at
low enough temperature will have colloidal particles in an
ordered phase. When two such sheets are driven across each
other, one sheet subjects stress on the other �and vice versa�
and at high enough stresses, could induce melting �4�. At
large enough driving forces, the sheets are occasionally
found to reorder to a reentrant solid phase displaying, the
phenomenon of shear-induced freezing �5�.

Recently, numerical simulations of sliding bilayers by Das
et al. �4,6� discovered a “melt-freeze” phase beyond the stan-
dard shear-induced phases. Das et al. performed Brownian
dynamics simulations of particles on two adjacent monolay-
ers in the manner described in the previous paragraph. Ear-
lier simulations usually contain one monolayer driven across
a fixed substrate �4� which is applicable when one layer is
much stiffer than the other. However the simulations of Das
et al. addressed the situation in which two comparably soft
layers are driven across each other and thus the behavior of
the particles on both layers becomes important. The relevant
parameters in their simulations included the strength of the
driving force, the magnitude of the coupling between par-
ticles on differing sheets, and the noise amplitude. Changing
these parameters displays rich and unexpected behavior.

Das et al. found that at fixed interlayer coupling and noise
strength, the sytem undergoes different phases as the driving
force is varied. For small driving forces, the two monolayers
remain in the ordered phase and simply creep past one other.
The same qualitative behavior is seen for very large driving

forces. However, at intermediate driving forces, the two
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monolayers undergo a melt-freeze phase in which both layers
stochastically disorder �melt� and order �freeze�. As the in-
terlayer coupling increases, the melt-freeze phase persists
over a larger range of driving forces. For a fixed driving
force �in which the system is in the melt-freeze phase�, in-
creasing the coupling also increases the amount of time a
layer spends in the disordered state.

In addition to the simulation of particles on layers, Das
et al. introduced a simple mean field phenomenological
model �4�. This phenomenological model contains one order
parameter and a strain variable. Like the spatially dependent
system, the mean field model has three simulation param-
eters �noise strength, coupling strength, and driving force�.
Remarkably, this simple model contains much of the rich
behavior of the more detailed particle simulations. However,
the interplay between the two layers cannot be studied by
this model with only one order parameter. The simple model
also clearly connects the melt-freeze phase with stochastic
resonance phenomena �4,7�.

In this paper, we closely follow but extend the phenom-
enology in Ref. �4� to include two order parameters �1 and �2

in the same spirit that the particle simulations of Das et al.
�4,6� generalized the conventional models of one sheet slid-
ing over a fixed substrate. This natural extension qualita-
tively recovers much of the behavior seen in the one order
parameter phenomenological model �therefore also in the
particle model�. In addition, we observe two features involv-
ing how one order parameter affects the free energy land-
scape of the other. The first feature is the tendency of the two
order parameters to be in different phases when the coupling
is finite, i.e., when �1 is in the ordered phase, �2 is likely to
be in the disordered phase. The second feature involves the
fluctuation of the order parameters. When �1 and �2 are out
of phase, their fluctuations are smaller than when they are in
the same phase. These features are compared to the simula-
tion of particles in Refs. �4,6�.

In the next section, we describe our two parameter Lan-
dau model and the Langevin-Ginzburg dynamics. Section III
contains the results from our simulations. As in Refs. �4,6�,
the results include driving force dependence and coupling

strength dependence.
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II. MODEL FREE ENERGY AND DYNAMICS

The order parameter in our mean field model represents
the structure factor for the colloidal particles in a given sheet
�8�. The model free energy must represent a system with two
phases �crystal and liquid� and contain a first order transition
between the phases. A simple effective Landau free energy
with these considerations is the simple double well potential
used in Refs. �4,6�,

V��� =
�

2
�2 −

�

3
�3 +

�

4
�4, �1�

where �, �, and � are all positive. The values are chosen so
that there are two phases �two minima� and the stable phase
is the crystalline one when there is no stress.

Modeling the dynamically driven phase transitions re-
quires a strain variable �, as in Refs. �4,6�. Since stress is
induced by a periodic crystal, the strain variable must be
periodic (we use the range �0,1�). A liquid does not induce
stress on a driven solid sheet. Using these properties of
strain, we model the part of the free energy with the strain
variable to be �9�

W��1,�2,�� =
c

2
�1

2�2
2�1 − cos�2���� , �2�

where c is a coupling strength. The total model free energy
includes both order parameters in a free energy landscape of
Eq. �1� and the strain variable and coupling of Eq. �2�,

F��1,�2,�� = V��1� + V��2� + W��1,�2,�� . �3�

Figure 1 shows the free energy for an order parameter
while the other is in the ordered state. Since the other sheet is
ordered, it can induce stress. As stress increases, shown by a
larger �, the ordered phase becomes less stable and the sys-

FIG. 1. �Color online� The free energy for one order parameter
�1 while the other order parameter �2 is in the ordered state. The
different plots represent different values of � from 0.0 �no stress� to
0.5 �maximal stress�. The coupling c is set to 0.25 here and �=1,
�=6.25, and �=8. When �2 is in the disordered state ��2=0�, the
strain part of the free energy is zero irrespective of �. In this case,
the landscape seen by �1 is exactly like the plot with �=0.0.
tem is driven towards the liquid phase. The changing land-

051403
scape shown in Fig. 1 shows how the simple free energy of
Eq. �3� can represent shear-induced melting.

Equation �3� displays the equilibrium conditions in which
the order parameters exist. For these driven systems, the dy-
namics are also important. In this paper, we use overdamped
Langevin dynamics of the form

FIG. 2. �Color online� The order parameter vs time for three
different driving forces d=0.025, 0.1, and 10.0, respectively, from
top to bottom. The coupling c=0.25 and noise strength D=0.004
are kept fixed.
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The damping coefficients �’s are set to unity, d represents a
constant driving force for the strain, and the 	’s represent
noise. We use Gaussian noise with zero mean �	�=0 and
variance D, �	�t�	�t���=2D
�t− t��. The amount of noise D
is related to the temperature through the fluctuation-
dissipation theorem. The strain variable and the order param-
eters have noise of equal amplitudes in our simulations.

Equations �3� and �4� describe the free energy and dynam-
ics of our phenomenological model. In the next section, we
briefly describe the numerical implementation of these equa-
tions and the results of our simulations.

III. RESULTS

We numerically integrate the Langevin-Ginzburg equa-
tions, Eqs. �4�, using the fourth order Runge-Kutta algo-
rithm. For all simulations, the stepsize is 0.001 and the inte-
grator is run for �106 transient steps which are discarded.
We also set �=1, �=6.25, and �=8 for all simulations. As in
Refs. �4,6�, the adjustable parameters in the model are the
strength of the constant driving force d, the coupling strength
c, and the noise amplitude D. Below, we show how the sys-
tem behaves by varying these parameters independently. To
study the variation of the driving force and the coupling, we
keep the noise amplitude fixed at D=0.004. We observe that
this noise strength is insufficient to drive the system to the
disordered phase from the ordered phase for very long times
when stress is absent.

A. Driving force dependence

As described in the Introduction and in Refs. �4,6�, the

FIG. 3. �Color online� The distribution of �1 taken over 1011

steps for d=0.025, 0.1, and 10.0. The coupling c=0.25 and noise
strength D=0.004 are kept fixed.
system stays essentially crystalline when the driving force is

051403
below a threshold value or above another threshold. Only at
intermediate driving forces is the melt-freeze phase seen. In
Fig. 2 we show �1 and �2 versus time at constant coupling,
c=0.25. The unit of time in Figs. 3 and 5 represents
2�104 timesteps. Figure 3 shows the distribution of �1 �the
distribution of �2 is the same after averaging over long
enough time due to the symmetry between the two in the free
energy�.

To understand this behavior qualitatively, we discuss the
role of the strain variable in determining the phase of the
system. The driving force tilts the cosine potential and drives
the strain variable in a preferred direction. At very small
driving forces, the strain variable is rarely able to leave the
minimum in which it started. As seen from Fig. 1, when � is
near this minimum the crystal well remains stable and � does
not cross the barrier. For very large driving forces the cosine
potential is not seen and the distribution of � is essentially
flat and does not spend enough time near its peak to allow �
to cross over to the liquid well. In between these two limits
exists an optimal value for d. Figure 4 shows the distribution
of � �since � is periodic from 0 to 1, it is only necessary to
display the distribution of the decimal� for different driving
forces. As d increases, the peak in the distribution moves to
a greater value and the whole distribution flattens.

From these figures cit is clear that there is an optimal
driving force in which the melt-freeze phase exists. This be-
havior qualitatively agrees with both the particle simulations
and the one order parameter phenomenological model in
Refs. �4,6�.

B. Coupling dependence

Keeping the driving force at a fixed value of d=0.1
�which is near the optimal value�, we observe the behavior of
the system as the coupling constant varies. Figure 5 shows
the order parameters versus time and Fig. 6 shows the distri-
bution of �1 for different couplings.

Since the driving force is taken to be near the optimal
value, all three cases from Figs. 5 and 6 are in the melt-

FIG. 4. �Color online� The distribution of � taken over 1011

steps for d=0.025, 0.05, 0.1, and 10.0. The coupling c=0.25 and
noise strength D=0.004 are kept fixed. � is periodic in the range
�0,1�.
freeze phase. From these figures, it is clear that as the cou-
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pling strength increases, the time spent in the liquid phase
increases as well, which is a feature seen in the models of
Das et al. These figures along with Figs. 2 and 3 indicate that
the phase diagrams of our phenomenological model would
be similar to the phase diagrams given in Ref. �4�, though
more simulations are necessary to verify this. Furthermore,

FIG. 5. �Color online� The order parameter vs time for three
different coupling strengths c=0.2, 0.25, and 0.3, respectively, from
top to bottom. The driving force d=0.1 and noise strength
D=0.004 are kept fixed.
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systems with larger coupling strengths have order parameters
that tend to be in opposite phases.

To explore this further, we define the boundary between
the two phases to be the location of the local maximum
without stress, �= �1/2����− ��2−4���1/2�, and calculate
how often �1 and �2 are in the same well. In the weak cou-
pling case �c=0.2�, the two order parameters are in the same
well approximately 80% of the time. For the medium cou-
pling case �c=0.25�, �1 and �2 are in the same phase ap-
proximately 35% of the time and in the large coupling case
�c=0.3�, they only reside in the same well about 10% of the
time. In the infinite coupling limit, the two order parameters
will “repel” each other rather strongly. Due to the symmetry
in the free energy between �1 and �2, in this limit, each order
parameter has the same probability of being in the ordered
phase as the disordered.

The observation described in the above paragraph pro-
vides a prediction for spatially dependent simulations and
experiments. Obviously, the behavior seen here cannot be
seen in the one order parameter mean field model.

By observing that the coupling term in the free energy
merely changes the coefficient of the quadratic term for a
given order parameter, one can intuitively understand this
behavior. In the large coupling regime, the landscape in
which �1 exists is strongly determined by �2 and �. If both
start in the crystal well, as soon as � is finite, this minimum
quickly becomes unstable and one of the �’s must roll down
to the disordered minimum. If �2 falls down the liquid well,
the amplitude of the effective coupling drops near zero and
�1 is again happily in its stable well. In addition, from �2’s
perspective, it is also in its own stable well because c�1

2 /2 is
finite and large. Since the height of the cosine potential is
proportional to both order parameters squared, when one or-
der parameter is in the liquid phase, � is essentially driven
without resistance. Driving the strain variable in this way
allows the crystal well to become stable for �2. With aid of
noise, �2 can eventually move back to the crystal phase. But
once this occurs, both order parameters are in a highly un-
stable position and one will quickly leave for the liquid
phase and the situation repeats itself. Which one crosses to

FIG. 6. �Color online� The distribution of �1 taken over 1011

steps for c=0.2, 0.25, and 0.3. The driving force d=0.1 and noise
strength D=0.004 are kept fixed.
the liquid phase first is a stochastic process and cannot be
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determined, but the repulsion effect still remains.
The simulations of layers of particles in Refs. �4,6� show

hints of this repulsive behavior though this repulsion is not
as explicitly seen as in our mean field model. Our phenom-
enological model provides intuition into this behavior and
predicts that it should be more easily seen as the coupling
increases. More work is necessary to verify whether this is
seen in a spatially dependent model.

With the form of our model free energy and the param-
eters in our simulations, the repulsive behavior is so strong
that the system has yet to be seen in a state where both order
parameters are in the disordered phase. Though this has not
been seen in our simulations using the parameters we have
chosen, the stochastic nature allows this state to be possible.
We have verified that when the parameters of the free energy,
Eq. �1�, are such that the barrier is small and the relative
depths of the two wells are small, both order parameters do
indeed coexist in the liquid well in a quasistable fashion.

C. Fluctuations

A close inspection of Figs. 2 and 5 reveals interesting
behavior regarding the fluctuations of the order parameters;
the fluctuation of one order parameter depends on the state of
the other order parameter. Obviously, the noise amplitude
and shape of the well determines the amount an order param-
eter fluctuates. The magnitude of the other order parameter
�and the strain� influences the quadratic term of the free en-
ergy, thereby changing the shape of the well.

Figures 2 and 5 show that the fluctuations of an order
parameter in the crystalline well is much larger when the
other order parameter resides in the same well. To quantify
this, we compare the standard deviation of �1 while both �1
and �2 are in the crystalline well ��� �1/2����− ��2

−4���1/2�	 to the standard deviation while �1 is ordered and
�2 is disordered. For c=0.25, d=0.1, and D=0.004, the stan-
dard deviation is approximately 0.039 for the former and
0.028 for the latter.

This behavior makes physical sense because when both
layers are solid, stress is induced between the two layers and
the particles are driven further away from their equilibrium
positions. Whereas, if the particles in one layer are disor-
dered, the layer will not induce any stress on the neighboring
layer.

IV. DISCUSSION

We note two minor disagreements between our mean
field model and the more detailed particle simulations of Das
et al. �4,6�. The first is that Das et al. observed a smaller
extent of order with smaller interlayer coupling whereas we
observe the opposite, i.e., for our model, the mean value for
� in the crystalline state is larger for smaller coupling c. The
second disagreement is that for larger coupling we see larger
fluctuations of the order parameter while Das et al. observed

a decrease in the amount of the fluctuations. Considering the
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simplicity of the phenomenological model, disparities such
as these are expected and the many agreements are quite
surprising.

By varying the noise in the one order parameter phenom-
enological model, Das et al. connects this melt-freeze phase
to stochastic resonance �4�. Qualitatively, the optimal driving
force exists when the driving time constant matches �within
perhaps a factor of 2� the thermal barrier crossing time con-
stant. Conversely, with a fixed driving force, one expects a
small window of noise amplitudes where the thermal escape
rate “resonates” with the driving rate. The existence of an
optimal noise amplitude �10� is a signature of stochastic
resonance �7�. Due to the similarities of that model and ours,
we expect that our model displays stochastic resonance as
well, though we have not performed extensive simulations
with noise dependence.

In this paper, we introduce a simple phenomenological
model for a system of two sheared monolayers to study a
phase, the melt-freeze phase, first seen in the simulations of
Das et al. �4,6�. Using numerical simulations, we observe
that the two order parameter model recovers many of the
same qualitative features as the simulations from Das et al.,
especially the dependence on driving force and coupling
strength. Our simple model displays new behavior involving
the interplay of the order parameters of two adjacent layers.
One behavior is that with strong interlayer couplings, two
adjacent layers will be in opposite states of matter. Another
involves the fluctuation of the order parameters in the melt-
freeze phase; fluctuations are larger when both order param-
eters coexist in the same well than when they are in opposite
wells. More simulations on spatially dependent systems are
necessary to verify these observations.

Das et al. suggested experiments using bulk colloidal
crystals, ordered copolymer monolayers, or colloidal mono-
layers to see this unusual melt-freeze phase �4�. Systems of
charged colloidal particles are good candidates to observe
this phenomenon because they possess many properties that
are tunable. The review article by Palberg �11� thoroughly
discusses the physical properties of charged colloids, how to
change the properties, and different measurement techniques.
For instance, the interparticle interaction can be adjusted by
changing the electrolyte concentration, thereby altering the
Coulomb screening. As seen in the simulations, the melt-
freeze phenomenon exists only in certain parameter win-
dows, therefore tunable parameters are necessary for experi-
mental observation. The melt-freeze phase and the behavior
seen in our mean field model could be seen in these experi-
mental systems.
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